ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.05533
18
12

Deformation-Compensated Learning for Image Reconstruction without Ground Truth

12 July 2021
Weijie Gan
Yu Sun
C. Eldeniz
Jiaming Liu
H. An
Ulugbek S. Kamilov
ArXivPDFHTML
Abstract

Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.

View on arXiv
Comments on this paper