ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.05187
22
3

Polynomial Time Reinforcement Learning in Factored State MDPs with Linear Value Functions

12 July 2021
Zihao Deng
Siddartha Devic
Brendan Juba
ArXivPDFHTML
Abstract

Many reinforcement learning (RL) environments in practice feature enormous state spaces that may be described compactly by a "factored" structure, that may be modeled by Factored Markov Decision Processes (FMDPs). We present the first polynomial-time algorithm for RL in Factored State MDPs (generalizing FMDPs) that neither relies on an oracle planner nor requires a linear transition model; it only requires a linear value function with a suitable local basis with respect to the factorization, permitting efficient variable elimination. With this assumption, we can solve this family of Factored State MDPs in polynomial time by constructing an efficient separation oracle for convex optimization. Importantly, and in contrast to prior work on FMDPs, we do not assume that the transitions on various factors are conditionally independent.

View on arXiv
Comments on this paper