11
1

Self-organized criticality in neural networks

Abstract

We demonstrate, both analytically and numerically, that learning dynamics of neural networks is generically attracted towards a self-organized critical state. The effect can be modeled with quartic interactions between non-trainable variables (e.g. states of neurons) and trainable variables (e.g. weight matrix). Non-trainable variables are rapidly driven towards stochastic equilibrium and trainable variables are slowly driven towards learning equilibrium described by a scale-invariant distribution on a wide range of scales. Our results suggest that the scale invariance observed in many physical and biological systems might be due to some kind of learning dynamics and support the claim that the universe might be a neural network.

View on arXiv
Comments on this paper