ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.03332
37
119

SimCC: a Simple Coordinate Classification Perspective for Human Pose Estimation

7 July 2021
Yanjie Li
Sen Yang
Peidong Liu
Shoukui Zhang
Yunxiao Wang
Zhicheng Wang
Wankou Yang
Shutao Xia
    3DH
ArXivPDFHTML
Abstract

The 2D heatmap-based approaches have dominated Human Pose Estimation (HPE) for years due to high performance. However, the long-standing quantization error problem in the 2D heatmap-based methods leads to several well-known drawbacks: 1) The performance for the low-resolution inputs is limited; 2) To improve the feature map resolution for higher localization precision, multiple costly upsampling layers are required; 3) Extra post-processing is adopted to reduce the quantization error. To address these issues, we aim to explore a brand new scheme, called \textit{SimCC}, which reformulates HPE as two classification tasks for horizontal and vertical coordinates. The proposed SimCC uniformly divides each pixel into several bins, thus achieving \emph{sub-pixel} localization precision and low quantization error. Benefiting from that, SimCC can omit additional refinement post-processing and exclude upsampling layers under certain settings, resulting in a more simple and effective pipeline for HPE. Extensive experiments conducted over COCO, CrowdPose, and MPII datasets show that SimCC outperforms heatmap-based counterparts, especially in low-resolution settings by a large margin.

View on arXiv
Comments on this paper