ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.03280
14
7

MD-split+: Practical Local Conformal Inference in High Dimensions

7 July 2021
Benjamin LeRoy
David Zhao
ArXivPDFHTML
Abstract

Quantifying uncertainty in model predictions is a common goal for practitioners seeking more than just point predictions. One tool for uncertainty quantification that requires minimal assumptions is conformal inference, which can help create probabilistically valid prediction regions for black box models. Classical conformal prediction only provides marginal validity, whereas in many situations locally valid prediction regions are desirable. Deciding how best to partition the feature space X when applying localized conformal prediction is still an open question. We present MD-split+, a practical local conformal approach that creates X partitions based on localized model performance of conditional density estimation models. Our method handles complex real-world data settings where such models may be misspecified, and scales to high-dimensional inputs. We discuss how our local partitions philosophically align with expected behavior from an unattainable conditional conformal inference approach. We also empirically compare our method against other local conformal approaches.

View on arXiv
Comments on this paper