ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.02966
13
13

E-PixelHop: An Enhanced PixelHop Method for Object Classification

7 July 2021
Yijing Yang
Vasileios Magoulianitis
C.-C. Jay Kuo
ArXivPDFHTML
Abstract

Based on PixelHop and PixelHop++, which are recently developed using the successive subspace learning (SSL) framework, we propose an enhanced solution for object classification, called E-PixelHop, in this work. E-PixelHop consists of the following steps. First, to decouple the color channels for a color image, we apply principle component analysis and project RGB three color channels onto two principle subspaces which are processed separately for classification. Second, to address the importance of multi-scale features, we conduct pixel-level classification at each hop with various receptive fields. Third, to further improve pixel-level classification accuracy, we develop a supervised label smoothing (SLS) scheme to ensure prediction consistency. Forth, pixel-level decisions from each hop and from each color subspace are fused together for image-level decision. Fifth, to resolve confusing classes for further performance boosting, we formulate E-PixelHop as a two-stage pipeline. In the first stage, multi-class classification is performed to get a soft decision for each class, where the top 2 classes with the highest probabilities are called confusing classes. Then,we conduct a binary classification in the second stage. The main contributions lie in Steps 1, 3 and 5.We use the classification of the CIFAR-10 dataset as an example to demonstrate the effectiveness of the above-mentioned key components of E-PixelHop.

View on arXiv
Comments on this paper