ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.02440
30
24

A Hierarchical Dual Model of Environment- and Place-Specific Utility for Visual Place Recognition

6 July 2021
Nikhil Varma Keetha
Michael Milford
Sourav Garg
ArXivPDFHTML
Abstract

Visual Place Recognition (VPR) approaches have typically attempted to match places by identifying visual cues, image regions or landmarks that have high ``utility'' in identifying a specific place. But this concept of utility is not singular - rather it can take a range of forms. In this paper, we present a novel approach to deduce two key types of utility for VPR: the utility of visual cues `specific' to an environment, and to a particular place. We employ contrastive learning principles to estimate both the environment- and place-specific utility of Vector of Locally Aggregated Descriptors (VLAD) clusters in an unsupervised manner, which is then used to guide local feature matching through keypoint selection. By combining these two utility measures, our approach achieves state-of-the-art performance on three challenging benchmark datasets, while simultaneously reducing the required storage and compute time. We provide further analysis demonstrating that unsupervised cluster selection results in semantically meaningful results, that finer grained categorization often has higher utility for VPR than high level semantic categorization (e.g. building, road), and characterise how these two utility measures vary across different places and environments. Source code is made publicly available at https://github.com/Nik-V9/HEAPUtil.

View on arXiv
Comments on this paper