ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01516
41
9
v1v2v3 (latest)

Improved Representation Learning for Session-based Recommendation

4 July 2021
Sai Mitheran
Abhinav Java
Surya Kant Sahu
Arshad Shaikh
ArXiv (abs)PDFHTMLGithub (27★)
Abstract

Session-based recommendation systems suggest relevant items to users by modeling user behavior and preferences using short-term anonymous sessions. Existing methods leverage Graph Neural Networks (GNNs) that propagate and aggregate information from neighboring nodes i.e., local message passing. Such graph-based architectures have representational limits, as a single sub-graph is susceptible to overfit the sequential dependencies instead of accounting for complex transitions between items in different sessions. We propose using a Transformer in combination with a target attentive GNN, which allows richer Representation Learning. Our experimental results and ablation show that our proposed method outperforms the existing methods on real-world benchmark datasets.

View on arXiv
Comments on this paper