Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM

Motivated by applications to single-particle cryo-electron microscopy (cryo-EM), we study several problems of function estimation in a low SNR regime, where samples are observed under random rotations of the function domain. In a general framework of group orbit estimation with linear projection, we describe a stratification of the Fisher information eigenvalues according to a sequence of transcendence degrees in the invariant algebra, and relate critical points of the log-likelihood landscape to a sequence of method-of-moments optimization problems. This extends previous results for a discrete rotation group without projection. We then compute these transcendence degrees and the forms of these moment optimization problems for several examples of function estimation under and rotations, including a simplified model of cryo-EM as introduced by Bandeira, Blum-Smith, Kileel, Perry, Weed, and Wein. For several of these examples, we affirmatively resolve numerical conjectures that -order moments are sufficient to locally identify a generic signal up to its rotational orbit. For low-dimensional approximations of the electric potential maps of two small protein molecules, we empirically verify that the noise-scalings of the Fisher information eigenvalues conform with these theoretical predictions over a range of SNR, in a model of rotations without projection.
View on arXiv