ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15675
75
10
v1v2v3 (latest)

Estimating Gaussian mixtures using sparse polynomial moment systems

29 June 2021
J. Lindberg
Carlos Améndola
J. Rodriguez
ArXiv (abs)PDFHTML
Abstract

The method of moments is a statistical technique for density estimation that solves a system of moment equations to estimate the parameters of an unknown distribution. A fundamental question critical to understanding identifiability asks how many moment equations are needed to get finitely many solutions and how many solutions there are. We answer this question for classes of Gaussian mixture models using the tools of polyhedral geometry. Using these results, we present an algorithm that performs parameter recovery, and therefore density estimation, for high dimensional Gaussian mixture models that scales linearly in the dimension.

View on arXiv
Comments on this paper