We study the variation space corresponding to a dictionary of functions in for a bounded domain . Specifically, we compare the variation space, which is defined in terms of a convex hull with related notions based on integral representations. This allows us to show that three important notions relating to the approximation theory of shallow neural networks, the Barron space, the spectral Barron space, and the Radon BV space, are actually variation spaces with respect to certain natural dictionaries.
View on arXiv