ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.14162
22
12

Few-Shot Domain Expansion for Face Anti-Spoofing

27 June 2021
Bowen Yang
Jing Zhang
Zhen-fei Yin
Jing Shao
    CVBM
ArXivPDFHTML
Abstract

Face anti-spoofing (FAS) is an indispensable and widely used module in face recognition systems. Although high accuracy has been achieved, a FAS system will never be perfect due to the non-stationary applied environments and the potential emergence of new types of presentation attacks in real-world applications. In practice, given a handful of labeled samples from a new deployment scenario (target domain) and abundant labeled face images in the existing source domain, the FAS system is expected to perform well in the new scenario without sacrificing the performance on the original domain. To this end, we identify and address a more practical problem: Few-Shot Domain Expansion for Face Anti-Spoofing (FSDE-FAS). This problem is challenging since with insufficient target domain training samples, the model may suffer from both overfitting to the target domain and catastrophic forgetting of the source domain. To address the problem, this paper proposes a Style transfer-based Augmentation for Semantic Alignment (SASA) framework. We propose to augment the target data by generating auxiliary samples based on photorealistic style transfer. With the assistant of the augmented data, we further propose a carefully designed mechanism to align different domains from both instance-level and distribution-level, and then stabilize the performance on the source domain with a less-forgetting constraint. Two benchmarks are proposed to simulate the FSDE-FAS scenarios, and the experimental results show that the proposed SASA method outperforms state-of-the-art methods.

View on arXiv
Comments on this paper