ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.13797
110
1676
v1v2v3v4v5v6v7 (latest)

PVTv2: Improved Baselines with Pyramid Vision Transformer

25 June 2021
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
    ViTAI4TS
ArXiv (abs)PDFHTMLGithub (1814★)
Abstract

Transformer in computer vision has recently shown encouraging progress. In this work, we improve the original Pyramid Vision Transformer (PVTv1) by adding three improvement designs, which include (1) locally continuous features with convolutions, (2) position encodings with zero paddings, and (3) linear complexity attention layers with average pooling. With these simple modifications, our PVTv2 significantly improves PVTv1 on classification, detection, and segmentation. Moreover, PVTv2 achieves much better performance than recent works, including Swin Transformer, under ImageNet-1K pre-training. We hope this work will make state-of-the-art vision Transformer research more accessible. Code is available at https://github.com/whai362/PVT .

View on arXiv
Comments on this paper