ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12753
9
6

DeepAuditor: Distributed Online Intrusion Detection System for IoT devices via Power Side-channel Auditing

24 June 2021
Woosub Jung
Yizhou Feng
S. Khan
Chunsheng Xin
Danella Zhao
Gang Zhou
ArXivPDFHTML
Abstract

As the number of IoT devices has increased rapidly, IoT botnets have exploited the vulnerabilities of IoT devices. However, it is still challenging to detect the initial intrusion on IoT devices prior to massive attacks. Recent studies have utilized power side-channel information to identify this intrusion behavior on IoT devices but still lack accurate models in real-time for ubiquitous botnet detection. We proposed the first online intrusion detection system called DeepAuditor for IoT devices via power auditing. To develop the real-time system, we proposed a lightweight power auditing device called Power Auditor. We also designed a distributed CNN classifier for online inference in a laboratory setting. In order to protect data leakage and reduce networking redundancy, we then proposed a privacy-preserved inference protocol via Packed Homomorphic Encryption and a sliding window protocol in our system. The classification accuracy and processing time were measured, and the proposed classifier outperformed a baseline classifier, especially against unseen patterns. We also demonstrated that the distributed CNN design is secure against any distributed components. Overall, the measurements were shown to the feasibility of our real-time distributed system for intrusion detection on IoT devices.

View on arXiv
Comments on this paper