ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12692
16
14

Dungeon and Platformer Level Blending and Generation using Conditional VAEs

17 June 2021
Anurag Sarkar
Seth Cooper
    DiffM
ArXivPDFHTML
Abstract

Variational autoencoders (VAEs) have been used in prior works for generating and blending levels from different games. To add controllability to these models, conditional VAEs (CVAEs) were recently shown capable of generating output that can be modified using labels specifying desired content, albeit working with segments of levels and platformers exclusively. We expand these works by using CVAEs for generating whole platformer and dungeon levels, and blending levels across these genres. We show that CVAEs can reliably control door placement in dungeons and progression direction in platformer levels. Thus, by using appropriate labels, our approach can generate whole dungeons and platformer levels of interconnected rooms and segments respectively as well as levels that blend dungeons and platformers. We demonstrate our approach using The Legend of Zelda, Metroid, Mega Man and Lode Runner.

View on arXiv
Comments on this paper