ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12169
11
37

APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores

23 June 2021
Boyuan Feng
Yuke Wang
Tong Geng
Ang Li
Yufei Ding
    MQ
ArXivPDFHTML
Abstract

Over the years, accelerating neural networks with quantization has been widely studied. Unfortunately, prior efforts with diverse precisions (e.g., 1-bit weights and 2-bit activations) are usually restricted by limited precision support on GPUs (e.g., int1 and int4). To break such restrictions, we introduce the first Arbitrary Precision Neural Network framework (APNN-TC) to fully exploit quantization benefits on Ampere GPU Tensor Cores. Specifically, APNN-TC first incorporates a novel emulation algorithm to support arbitrary short bit-width computation with int1 compute primitives and XOR/AND Boolean operations. Second, APNN-TC integrates arbitrary precision layer designs to efficiently map our emulation algorithm to Tensor Cores with novel batching strategies and specialized memory organization. Third, APNN-TC embodies a novel arbitrary precision NN design to minimize memory access across layers and further improve performance. Extensive evaluations show that APNN-TC can achieve significant speedup over CUTLASS kernels and various NN models, such as ResNet and VGG.

View on arXiv
Comments on this paper