ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11559
18
22
v1v2 (latest)

Hand-Drawn Electrical Circuit Recognition using Object Detection and Node Recognition

22 June 2021
Rachala Rohith Reddy
Mahesh Raveendranatha Panicker
ArXiv (abs)PDFHTML
Abstract

With the recent developments in neural networks, there has been a resurgence in algorithms for the automatic generation of simulation ready electronic circuits from hand-drawn circuits. However, most of the approaches in literature were confined to classify different types of electrical components and only a few of those methods have shown a way to rebuild the circuit schematic from the scanned image, which is extremely important for further automation of netlist generation. This paper proposes a real-time algorithm for the automatic recognition of hand-drawn electrical circuits based on object detection and circuit node recognition. The proposed approach employs You Only Look Once version 5 (YOLOv5) for detection of circuit components and a novel Hough transform based approach for node recognition. Using YOLOv5 object detection algorithm, a mean average precision (mAP0.5) of 98.2% is achieved in detecting the components. The proposed method is also able to rebuild the circuit schematic with 80% accuracy.

View on arXiv
Comments on this paper