ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11522
11
3

Total Least Squares for Optimal Pose Estimation

22 June 2021
Saeed Maleki
Yang Cheng
J. Crassidis
M. Schmid
ArXivPDFHTML
Abstract

This work provides a theoretical framework for the pose estimation problem using total least squares for vector observations from landmark features. First, the optimization framework is formulated with observation vectors extracted from point cloud features. Then, error-covariance expressions are derived. The attitude and position solutions obtained via the derived optimization framework are proven to reach the bounds defined by the Cram\ér-Rao lower bound under the small-angle approximation of attitude errors. The measurement data for the simulation of this problem is provided through a series of vector observation scans, and a fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. Here, previous derivations are expanded for the pose estimation problem to include more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is simulated in a Monte-Carlo framework to validate the error-covariance analysis.

View on arXiv
Comments on this paper