ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11096
32
3
v1v2 (latest)

Learning to Rank Question Answer Pairs with Bilateral Contrastive Data Augmentation

21 June 2021
Yang Deng
Wenxuan Zhang
W. Lam
ArXiv (abs)PDFHTML
Abstract

In this work, we propose a novel and easy-to-apply data augmentation strategy, namely Bilateral Generation (BiG), with a contrastive training objective for improving the performance of ranking question answer pairs with existing labeled data. In specific, we synthesize pseudo-positive QA pairs in contrast to the original negative QA pairs with two pre-trained generation models, one for question generation, the other for answer generation, which are fine-tuned on the limited positive QA pairs from the original dataset. With the augmented dataset, we design a contrastive training objective for learning to rank question answer pairs. Experimental results on three benchmark datasets show that our method significantly improves the performance of ranking models by making full use of existing labeled data and can be easily applied to different ranking models.

View on arXiv
Comments on this paper