ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11072
  4. Cited By
Techniques for Symbol Grounding with SATNet

Techniques for Symbol Grounding with SATNet

16 June 2021
Sever Topan
David Rolnick
X. Si
    NAI
ArXiv (abs)PDFHTML

Papers citing "Techniques for Symbol Grounding with SATNet"

17 / 17 papers shown
Title
Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback
Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback
Daniele Meli
Paolo Fiorini
90
0
0
13 Jan 2025
Neuro-symbolic Learning Yielding Logical Constraints
Neuro-symbolic Learning Yielding Logical Constraints
Zenan Li
Yunpeng Huang
Zhaoyu Li
Yuan Yao
Jingwei Xu
Taolue Chen
Xiaoxing Ma
Jian Lu
NAI
101
6
0
28 Oct 2024
Neural Concept Binder
Neural Concept Binder
Wolfgang Stammer
Antonia Wüst
David Steinmann
Kristian Kersting
OCL
102
7
0
14 Jun 2024
Learning Guided Automated Reasoning: A Brief Survey
Learning Guided Automated Reasoning: A Brief Survey
Lasse Blaauwbroek
David M. Cerna
Thibault Gauthier
Jan Jakubruv
C. Kaliszyk
Martin Suda
Josef Urban
LRM
95
5
0
06 Mar 2024
Softened Symbol Grounding for Neuro-symbolic Systems
Softened Symbol Grounding for Neuro-symbolic Systems
Zenan Li
Yuan Yao
Taolue Chen
Jingwei Xu
Chun Cao
Xiaoxing Ma
Jian Lu
NAI
67
14
0
01 Mar 2024
Simple and Effective Transfer Learning for Neuro-Symbolic Integration
Simple and Effective Transfer Learning for Neuro-Symbolic Integration
Alessandro Daniele
Tommaso Campari
Sagar Malhotra
Luciano Serafini
106
1
0
21 Feb 2024
Symbol Correctness in Deep Neural Networks Containing Symbolic Layers
Symbol Correctness in Deep Neural Networks Containing Symbolic Layers
Aaron Bembenek
Toby Murray
NAI
104
1
0
06 Feb 2024
Probabilistic Abduction for Visual Abstract Reasoning via Learning Rules
  in Vector-symbolic Architectures
Probabilistic Abduction for Visual Abstract Reasoning via Learning Rules in Vector-symbolic Architectures
Michael Hersche
Francesco di Stefano
Thomas Hofmann
Abu Sebastian
Abbas Rahimi
83
8
0
29 Jan 2024
Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings
Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings
Yifei Peng
Yu Jin
Yu Jin
Zhexu Luo
Wang-Zhou Dai
Zhong Ren
Kun Zhou
Kun Zhou
GANNAI
93
0
0
26 Oct 2023
Learning Reliable Logical Rules with SATNet
Learning Reliable Logical Rules with SATNet
Zhaoyu Li
Jinpei Guo
Yuhe Jiang
Xujie Si
LRMNAI
66
2
0
03 Oct 2023
A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
  Concepts from Spatial Sensory Data
A Recursive Bateson-Inspired Model for the Generation of Semantic Formal Concepts from Spatial Sensory Data
Jaime de Miguel-Rodríguez
Fernando Sancho-Caparrini
53
0
0
16 Jul 2023
Learning to Solve Constraint Satisfaction Problems with Recurrent
  Transformer
Learning to Solve Constraint Satisfaction Problems with Recurrent Transformer
Zhun Yang
Adam Ishay
Joohyung Lee
111
9
0
10 Jul 2023
Learning Modulo Theories
Learning Modulo Theories
Matt Fredrikson
Kaiji Lu
Saranya Vijayakumar
S. Jha
Vijay Ganesh
Zifan Wang
NAIOffRL
88
0
0
26 Jan 2023
Differentiable Fuzzy $\mathcal{ALC}$: A Neural-Symbolic Representation
  Language for Symbol Grounding
Differentiable Fuzzy ALC\mathcal{ALC}ALC: A Neural-Symbolic Representation Language for Symbol Grounding
Xuan Wu
Xinhao Zhu
Yizheng Zhao
Xinyu Dai
FedMLAI4CE
71
2
0
22 Nov 2022
Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions
Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions
Alessandro Daniele
Tommaso Campari
Sagar Malhotra
Luciano Serafini
NAI
117
19
0
24 Aug 2022
Learning Symmetric Rules with SATNet
Learning Symmetric Rules with SATNet
S. Lim
Eun-Gyeol Oh
Hongseok Yang
AAML
106
3
0
28 Jun 2022
From Perception to Programs: Regularize, Overparameterize, and Amortize
From Perception to Programs: Regularize, Overparameterize, and Amortize
Hao Tang
Kevin Ellis
NAI
82
10
0
13 Jun 2022
1