ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10517
78
23
v1v2v3 (latest)

A Max-Min Entropy Framework for Reinforcement Learning

19 June 2021
Seungyul Han
Y. Sung
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose a max-min entropy framework for reinforcement learning (RL) to overcome the limitation of the maximum entropy RL framework in model-free sample-based learning. Whereas the maximum entropy RL framework guides learning for policies to reach states with high entropy in the future, the proposed max-min entropy framework aims to learn to visit states with low entropy and maximize the entropy of these low-entropy states to promote exploration. For general Markov decision processes (MDPs), an efficient algorithm is constructed under the proposed max-min entropy framework based on disentanglement of exploration and exploitation. Numerical results show that the proposed algorithm yields drastic performance improvement over the current state-of-the-art RL algorithms.

View on arXiv
Comments on this paper