ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08967
11
3

Estimating the Robustness of Public Transport Systems Using Machine Learning

10 June 2021
M. Müller-Hannemann
Ralf Rückert
Alexander Schiewe
A. Schöbel
    OOD
ArXivPDFHTML
Abstract

The planning of attractive and cost efficient public transport systems is a highly complex optimization process involving many steps. Integrating robustness from a passenger's point of view makes the task even more challenging. With numerous different definitions of robustness in literature, a real-world acceptable evaluation of the robustness of a public transport system is to simulate its performance under a large number of possible scenarios. Unfortunately, this is computationally very expensive. In this paper, we therefore explore a new way of such a scenario-based robustness approximation by using methods from machine learning. We achieve a fast approach with a very high accuracy by gathering a subset of key features of a public transport system and its passenger demand and training an artificial neural network to learn the outcome of a given set of robustness tests. The network is then able to predict the robustness of untrained instances with high accuracy using only its key features, allowing for a robustness oracle for transport planners that approximates the robustness in constant time. Such an oracle can be used as black box to increase the robustness within a local search framework for integrated public transportation planning. In computational experiments with different benchmark instances we demonstrate an excellent quality of our predictions.

View on arXiv
Comments on this paper