ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08689
20
22

Alzheimer's Disease Detection from Spontaneous Speech through Combining Linguistic Complexity and (Dis)Fluency Features with Pretrained Language Models

16 June 2021
Yu Qiao
Xuefeng Yin
Daniel Wiechmann
E. Kerz
ArXivPDFHTML
Abstract

In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimer's disease detection of the 2021 ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech) challenge. An accuracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model. Our best-performing model that integrated component models using a stacking ensemble technique performed equally well on cross-validation and test data, indicating that it is robust against overfitting.

View on arXiv
Comments on this paper