40
48

Maxmin-Fair Ranking: Individual Fairness under Group-Fairness Constraints

Abstract

We study a novel problem of fairness in ranking aimed at minimizing the amount of individual unfairness introduced when enforcing group-fairness constraints. Our proposal is rooted in the distributional maxmin fairness theory, which uses randomization to maximize the expected satisfaction of the worst-off individuals. We devise an exact polynomial-time algorithm to find maxmin-fair distributions of general search problems (including, but not limited to, ranking), and show that our algorithm can produce rankings which, while satisfying the given group-fairness constraints, ensure that the maximum possible value is brought to individuals.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.