ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08171
21
3

Evaluating Modules in Graph Contrastive Learning

15 June 2021
Ganqu Cui
Y. Du
Cheng Yang
Jie Zhou
Liang Xu
Xing Zhou
Lifeng Wang
Zhiyuan Liu
ArXivPDFHTML
Abstract

The recent emergence of contrastive learning approaches facilitates the application on graph representation learning (GRL), introducing graph contrastive learning (GCL) into the literature. These methods contrast semantically similar and dissimilar sample pairs to encode the semantics into node or graph embeddings. However, most existing works only performed \textbf{model-level} evaluation, and did not explore the combination space of modules for more comprehensive and systematic studies. For effective \textbf{module-level} evaluation, we propose a framework that decomposes GCL models into four modules: (1) a \textbf{sampler} to generate anchor, positive and negative data samples (nodes or graphs); (2) an \textbf{encoder} and a \textbf{readout} function to get sample embeddings; (3) a \textbf{discriminator} to score each sample pair (anchor-positive and anchor-negative); and (4) an \textbf{estimator} to define the loss function. Based on this framework, we conduct controlled experiments over a wide range of architectural designs and hyperparameter settings on node and graph classification tasks. Specifically, we manage to quantify the impact of a single module, investigate the interaction between modules, and compare the overall performance with current model architectures. Our key findings include a set of module-level guidelines for GCL, e.g., simple samplers from LINE and DeepWalk are strong and robust; an MLP encoder associated with Sum readout could achieve competitive performance on graph classification. Finally, we release our implementations and results as OpenGCL, a modularized toolkit that allows convenient reproduction, standard model and module evaluation, and easy extension. OpenGCL is available at \url{https://github.com/thunlp/OpenGCL}.

View on arXiv
Comments on this paper