21
2

Learning Full Configuration Interaction Electron Correlations with Deep Learning

Abstract

In this report, we present a deep learning framework termed the Electron Correlation Potential Neural Network (eCPNN) that can learn succinct and compact potential functions. These functions can effectively describe the complex instantaneous spatial correlations among electrons in many--electron atoms. The eCPNN was trained in an unsupervised manner with limited information from Full Configuration Interaction (FCI) one--electron density functions within predefined limits of accuracy. Using the effective correlation potential functions generated by eCPNN, we can predict the total energies of each of the studied atomic systems with a remarkable accuracy when compared to FCI energies.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.