ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07767
27
35

How does Heterophily Impact the Robustness of Graph Neural Networks? Theoretical Connections and Practical Implications

14 June 2021
Jiong Zhu
Junchen Jin
Donald Loveland
Michael T. Schaub
Danai Koutra
    AAML
ArXivPDFHTML
Abstract

We bridge two research directions on graph neural networks (GNNs), by formalizing the relation between heterophily of node labels (i.e., connected nodes tend to have dissimilar labels) and the robustness of GNNs to adversarial attacks. Our theoretical and empirical analyses show that for homophilous graph data, impactful structural attacks always lead to reduced homophily, while for heterophilous graph data the change in the homophily level depends on the node degrees. These insights have practical implications for defending against attacks on real-world graphs: we deduce that separate aggregators for ego- and neighbor-embeddings, a design principle which has been identified to significantly improve prediction for heterophilous graph data, can also offer increased robustness to GNNs. Our comprehensive experiments show that GNNs merely adopting this design achieve improved empirical and certifiable robustness compared to the best-performing unvaccinated model. Additionally, combining this design with explicit defense mechanisms against adversarial attacks leads to an improved robustness with up to 18.33% performance increase under attacks compared to the best-performing vaccinated model.

View on arXiv
Comments on this paper