ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07549
6
3

Named Entity Normalization Model Using Edge Weight Updating Neural Network: Assimilation Between Knowledge-Driven Graph and Data-Driven Graph

14 June 2021
Sung Hwan Jeon
Sungzoon Cho
    MedIm
ArXivPDFHTML
Abstract

Discriminating the matched named entity pairs or identifying the entities' canonical forms are critical in text mining tasks. More precise named entity normalization in text mining will benefit other subsequent text analytic applications. We built the named entity normalization model with a novel Edge Weight Updating Neural Network. Our proposed model when tested on four different datasets achieved state-of-the-art results. We, next, verify our model's performance on NCBI Disease, BC5CDR Disease, and BC5CDR Chemical databases, which are widely used named entity normalization datasets in the bioinformatics field. We also tested our model with our own financial named entity normalization dataset to validate the efficacy for more general applications. Using the constructed dataset, we differentiate named entity pairs. Our model achieved the highest named entity normalization performances in terms of various evaluation metrics.

View on arXiv
Comments on this paper