ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07393
45
28

Cross-replication Reliability -- An Empirical Approach to Interpreting Inter-rater Reliability

11 June 2021
KayYen Wong
Praveen K. Paritosh
Lora Aroyo
ArXiv (abs)PDFHTML
Abstract

We present a new approach to interpreting IRR that is empirical and contextualized. It is based upon benchmarking IRR against baseline measures in a replication, one of which is a novel cross-replication reliability (xRR) measure based on Cohen's kappa. We call this approach the xRR framework. We opensource a replication dataset of 4 million human judgements of facial expressions and analyze it with the proposed framework. We argue this framework can be used to measure the quality of crowdsourced datasets.

View on arXiv
Comments on this paper