ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07044
46
9

Optimal detection of the feature matching map in presence of noise and outliers

13 June 2021
T. Galstyan
A. Minasyan
A. Dalalyan
ArXivPDFHTML
Abstract

We consider the problem of finding the matching map between two sets of ddd dimensional vectors from noisy observations, where the second set contains outliers. The matching map is then an injection, which can be consistently estimated only if the vectors of the second set are well separated. The main result shows that, in the high-dimensional setting, a detection region of unknown injection can be characterized by the sets of vectors for which the inlier-inlier distance is of order at least d1/4d^{1/4}d1/4 and the inlier-outlier distance is of order at least d1/2d^{1/2}d1/2. These rates are achieved using the estimated matching minimizing the sum of logarithms of distances between matched pairs of points. We also prove lower bounds establishing optimality of these rates. Finally, we report results of numerical experiments on both synthetic and real world data that illustrate our theoretical results and provide further insight into the properties of the estimators studied in this work.

View on arXiv
Comments on this paper