ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05487
11
2

RLCorrector: Reinforced Proofreading for Cell-level Microscopy Image Segmentation

10 June 2021
K. Nguyen
Ganghee Jang
T. Tuan
Won-Ki Jeong
ArXivPDFHTML
Abstract

Segmentation of nanoscale electron microscopy (EM) images is crucial but still challenging in connectomics research. One reason for this is that none of the existing segmentation methods are error-free, so they require proofreading, which is typically implemented as an interactive, semi-automatic process via manual intervention. Herein, we propose a fully automatic proofreading method based on reinforcement learning that mimics the human decision process of detection, classification, and correction of segmentation errors. We systematically design the proposed system by combining multiple reinforcement learning agents in a hierarchical manner, where each agent focuses only on a specific task while preserving dependency between agents. Furthermore, we demonstrate that the episodic task setting of reinforcement learning can efficiently manage a combination of merge and split errors concurrently presented in the input. We demonstrate the efficacy of the proposed system by comparing it with conventional proofreading methods over various testing cases.

View on arXiv
Comments on this paper