ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05147
16
7

Helping results assessment by adding explainable elements to the deep relevance matching model

9 June 2021
Ioannis Chios
Suzan Verberne
ArXivPDFHTML
Abstract

In this paper we address the explainability of web search engines. We propose two explainable elements on the search engine result page: a visualization of query term weights and a visualization of passage relevance. The idea is that search engines that indicate to the user why results are retrieved are valued higher by users and gain user trust. We deduce the query term weights from the term gating network in the Deep Relevance Matching Model (DRMM) and visualize them as a doughnut chart. In addition, we train a passage-level ranker with DRMM that selects the most relevant passage from each document and shows it as snippet on the result page. Next to the snippet we show a document thumbnail with this passage highlighted. We evaluate the proposed interface in an online user study, asking users to judge the explainability and assessability of the interface. We found that users judge our proposed interface significantly more explainable and easier to assess than a regular search engine result page. However, they are not significantly better in selecting the relevant documents from the top-5. This indicates that the explainability of the search engine result page leads to a better user experience. Thus, we conclude that the proposed explainable elements are promising as visualization for search engine users.

View on arXiv
Comments on this paper