ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.04886
13
2

Fully differentiable model discovery

9 June 2021
G. Both
R. Kusters
    PINN
ArXivPDFHTML
Abstract

Model discovery aims at autonomously discovering differential equations underlying a dataset. Approaches based on Physics Informed Neural Networks (PINNs) have shown great promise, but a fully-differentiable model which explicitly learns the equation has remained elusive. In this paper we propose such an approach by integrating neural network-based surrogates with Sparse Bayesian Learning (SBL). This combination yields a robust model discovery algorithm, which we showcase on various datasets. We then identify a connection with multitask learning, and build on it to construct a Physics Informed Normalizing Flow (PINF). We present a proof-of-concept using a PINF to directly learn a density model from single particle data. Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.

View on arXiv
Comments on this paper