ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.04060
21
17

Self-supervised and Supervised Joint Training for Resource-rich Machine Translation

8 June 2021
Yong Cheng
Wei Wang
Lu Jiang
Wolfgang Macherey
ArXivPDFHTML
Abstract

Self-supervised pre-training of text representations has been successfully applied to low-resource Neural Machine Translation (NMT). However, it usually fails to achieve notable gains on resource-rich NMT. In this paper, we propose a joint training approach, F2F_2F2​-XEnDec, to combine self-supervised and supervised learning to optimize NMT models. To exploit complementary self-supervised signals for supervised learning, NMT models are trained on examples that are interbred from monolingual and parallel sentences through a new process called crossover encoder-decoder. Experiments on two resource-rich translation benchmarks, WMT'14 English-German and WMT'14 English-French, demonstrate that our approach achieves substantial improvements over several strong baseline methods and obtains a new state of the art of 46.19 BLEU on English-French when incorporating back translation. Results also show that our approach is capable of improving model robustness to input perturbations such as code-switching noise which frequently appears on social media.

View on arXiv
Comments on this paper