ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03589
51
22
v1v2v3 (latest)

Nonparametric adaptive control and prediction: theory and randomized algorithms

7 June 2021
Nicholas M. Boffi
Stephen Tu
Jean-Jacques E. Slotine
ArXiv (abs)PDFHTML
Abstract

A key assumption in the theory of nonlinear adaptive control is that the uncertainty of the system can be expressed in the linear span of a set of known basis functions. While this assumption leads to efficient algorithms, it limits applications to very specific classes of systems. We introduce a novel nonparametric adaptive algorithm that learns an infinite-dimensional density over parameters to cancel an unknown disturbance in a reproducing kernel Hilbert space. Surprisingly, the resulting control input admits an analytical expression that enables its implementation despite its underlying infinite-dimensional structure. While this adaptive input is rich and expressive -- subsuming, for example, traditional linear parameterizations -- its computational complexity grows linearly with time, making it comparatively more expensive than its parametric counterparts. Leveraging the theory of random Fourier features, we provide an efficient randomized implementation that recovers the complexity of classical parametric methods while provably retaining the expressivity of the nonparametric input. In particular, our explicit bounds only depend polynomially on the underlying parameters of the system, allowing our proposed algorithms to efficiently scale to high-dimensional systems. As an illustration of the method, we demonstrate the ability of the randomized approximation algorithm to learn a predictive model of a 60-dimensional system consisting of ten point masses interacting through Newtonian gravitation.

View on arXiv
Comments on this paper