ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03464
24
13
v1v2 (latest)

Learning stable reduced-order models for hybrid twins

7 June 2021
Abel Sancarlos
Morgan Cameron
Jean-Marc Le Peuvedic
J. Groulier
J. Duval
Elías Cueto
Francisco Chinesta
ArXiv (abs)PDFHTML
Abstract

The concept of Hybrid Twin (HT) has recently received a growing interest thanks to the availability of powerful machine learning techniques. This twin concept combines physics-based models within a model-order reduction framework-to obtain real-time feedback rates-and data science. Thus, the main idea of the HT is to develop on-the-fly data-driven models to correct possible deviations between measurements and physics-based model predictions. This paper is focused on the computation of stable, fast and accurate corrections in the Hybrid Twin framework. Furthermore, regarding the delicate and important problem of stability, a new approach is proposed, introducing several sub-variants and guaranteeing a low computational cost as well as the achievement of a stable time-integration.

View on arXiv
Comments on this paper