ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02624
87
13
v1v2 (latest)

ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

4 June 2021
Felix Dangel
Lukas Tatzel
Philipp Hennig
ArXiv (abs)PDFHTML
Abstract

Curvature in form of the Hessian or its generalized Gauss-Newton (GGN) approximation is valuable for algorithms that rely on a local model for the loss to train, compress, or explain deep networks. Existing methods based on implicit multiplication via automatic differentiation or Kronecker-factored block diagonal approximations do not consider noise in the mini-batch. We present ViViT, a curvature model that leverages the GGN's low-rank structure without further approximations. It allows for efficient computation of eigenvalues, eigenvectors, as well as per-sample first- and second-order directional derivatives. The representation is computed in parallel with gradients in one backward pass and offers a fine-grained cost-accuracy trade-off, which allows it to scale. As examples for ViViT's usefulness, we investigate the directional gradients and curvatures during training, and how noise information can be used to improve the stability of second-order methods.

View on arXiv
Comments on this paper