ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00446
14
25

PanoDR: Spherical Panorama Diminished Reality for Indoor Scenes

1 June 2021
V. Gkitsas
V. Sterzentsenko
N. Zioulis
G. Albanis
D. Zarpalas
ArXivPDFHTML
Abstract

The rising availability of commercial 360∘360^\circ360∘ cameras that democratize indoor scanning, has increased the interest for novel applications, such as interior space re-design. Diminished Reality (DR) fulfills the requirement of such applications, to remove existing objects in the scene, essentially translating this to a counterfactual inpainting task. While recent advances in data-driven inpainting have shown significant progress in generating realistic samples, they are not constrained to produce results with reality mapped structures. To preserve the `reality' in indoor (re-)planning applications, the scene's structure preservation is crucial. To ensure structure-aware counterfactual inpainting, we propose a model that initially predicts the structure of an indoor scene and then uses it to guide the reconstruction of an empty -- background only -- representation of the same scene. We train and compare against other state-of-the-art methods on a version of the Structured3D dataset modified for DR, showing superior results in both quantitative metrics and qualitative results, but more interestingly, our approach exhibits a much faster convergence rate. Code and models are available at https://vcl3d.github.io/PanoDR/ .

View on arXiv
Comments on this paper