ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00200
19
13

Iterative Hierarchical Attention for Answering Complex Questions over Long Documents

1 June 2021
Haitian Sun
William W. Cohen
Ruslan Salakhutdinov
ArXivPDFHTML
Abstract

We propose a new model, DocHopper, that iteratively attends to different parts of long, hierarchically structured documents to answer complex questions. Similar to multi-hop question-answering (QA) systems, at each step, DocHopper uses a query qqq to attend to information from a document, combines this ``retrieved'' information with qqq to produce the next query. However, in contrast to most previous multi-hop QA systems, DocHopper is able to ``retrieve'' either short passages or long sections of the document, thus emulating a multi-step process of ``navigating'' through a long document to answer a question. To enable this novel behavior, DocHopper does not combine document information with qqq by concatenating text to the text of qqq, but by combining a compact neural representation of qqq with a compact neural representation of a hierarchical part of the document, which can potentially be quite large. We experiment with DocHopper on four different QA tasks that require reading long and complex documents to answer multi-hop questions, and show that DocHopper achieves state-of-the-art results on three of the datasets. Additionally, DocHopper is efficient at inference time, being 3--10 times faster than the baselines.

View on arXiv
Comments on this paper