ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14625
53
0
v1v2v3 (latest)

Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT

30 May 2021
Thomas Bartz-Beielstein
ArXiv (abs)PDFHTML
Abstract

A surrogate model based hyperparameter tuning approach for deep learning is presented. This article demonstrates how the architecture-level parameters (hyperparameters) of deep learning models that were implemented in Keras/tensorflow can be optimized. The implementation of the tuning procedure is 100% accessible from R, the software environment for statistical computing. With a few lines of code, existing R packages (tfruns and SPOT) can be combined to perform hyperparameter tuning. An elementary hyperparameter tuning task (neural network and the MNIST data) is used to exemplify this approach

View on arXiv
Comments on this paper