ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14086
11
0

Augmenting Anchors by the Detector Itself

28 May 2021
Xiaopei Wan
Shengjie Chen
Yujiu Yang
Zhenhua Guo
    ObjD
ArXivPDFHTML
Abstract

Usually, it is difficult to determine the scale and aspect ratio of anchors for anchor-based object detection methods. Current state-of-the-art object detectors either determine anchor parameters according to objects' shape and scale in a dataset, or avoid this problem by utilizing anchor-free methods, however, the former scheme is dataset-specific and the latter methods could not get better performance than the former ones. In this paper, we propose a novel anchor augmentation method named AADI, which means Augmenting Anchors by the Detector Itself. AADI is not an anchor-free method, instead, it can convert the scale and aspect ratio of anchors from a continuous space to a discrete space, which greatly alleviates the problem of anchors' designation. Furthermore, AADI is a learning-based anchor augmentation method, but it does not add any parameters or hyper-parameters, which is beneficial for research and downstream tasks. Extensive experiments on COCO dataset demonstrate the effectiveness of AADI, specifically, AADI achieves significant performance boosts on many state-of-the-art object detectors (eg. at least +2.4 box AP on Faster R-CNN, +2.2 box AP on Mask R-CNN, and +0.9 box AP on Cascade Mask R-CNN). We hope that this simple and cost-efficient method can be widely used in object detection. Code and models are available at https://github.com/WanXiaopei/aadi.

View on arXiv
Comments on this paper