ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14074
13
53

Learning Neuro-Symbolic Relational Transition Models for Bilevel Planning

28 May 2021
Rohan Chitnis
Tom Silver
J. Tenenbaum
Tomas Lozano-Perez
L. Kaelbling
ArXivPDFHTML
Abstract

In robotic domains, learning and planning are complicated by continuous state spaces, continuous action spaces, and long task horizons. In this work, we address these challenges with Neuro-Symbolic Relational Transition Models (NSRTs), a novel class of models that are data-efficient to learn, compatible with powerful robotic planning methods, and generalizable over objects. NSRTs have both symbolic and neural components, enabling a bilevel planning scheme where symbolic AI planning in an outer loop guides continuous planning with neural models in an inner loop. Experiments in four robotic planning domains show that NSRTs can be learned after only tens or hundreds of training episodes, and then used for fast planning in new tasks that require up to 60 actions and involve many more objects than were seen during training. Video: https://tinyurl.com/chitnis-nsrts

View on arXiv
Comments on this paper