ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13859
19
3

Generative Network-Based Reduced-Order Model for Prediction, Data Assimilation and Uncertainty Quantification

28 May 2021
Vinicius L. S. Silva
Claire E. Heaney
N. Nenov
Christopher C. Pain
    AI4CE
ArXivPDFHTML
Abstract

We propose a new method in which a generative network (GN) integrate into a reduced-order model (ROM) framework is used to solve inverse problems for partial differential equations (PDE). The aim is to match available measurements and estimate the corresponding uncertainties associated with the states and parameters of a numerical physical simulation. The GN is trained using only unconditional simulations of the discretized PDE model. We compare the proposed method with the golden standard Markov chain Monte Carlo. We apply the proposed approaches to a spatio-temporal compartmental model in epidemiology. The results show that the proposed GN-based ROM can efficiently quantify uncertainty and accurately match the measurements and the golden standard, using only a few unconditional simulations of the full-order numerical PDE model.

View on arXiv
Comments on this paper