ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13264
25
0

How saccadic vision might help with theinterpretability of deep networks

27 May 2021
Iana Sereda
Grigory V. Osipov
    FAtt
ArXivPDFHTML
Abstract

We describe how some problems (interpretability,lack of object-orientedness) of modern deep networks potentiallycould be solved by adapting a biologically plausible saccadicmechanism of perception. A sketch of such a saccadic visionmodel is proposed. Proof of concept experimental results areprovided to support the proposed approach.

View on arXiv
Comments on this paper