ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13017
12
24

Minimax Optimal Fixed-Budget Best Arm Identification in Linear Bandits

27 May 2021
Junwen Yang
Vincent Y. F. Tan
ArXivPDFHTML
Abstract

We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-based Linear Best Arm Identification (OD-LinBAI). We provide a theoretical analysis of the failure probability of OD-LinBAI. Instead of all the optimality gaps, the performance of OD-LinBAI depends only on the gaps of the top ddd arms, where ddd is the effective dimension of the linear bandit instance. Complementarily, we present a minimax lower bound for this problem. The upper and lower bounds show that OD-LinBAI is minimax optimal up to constant multiplicative factors in the exponent, which is a significant theoretical improvement over existing methods (e.g., BayesGap, Peace, LinearExploration and GSE), and settles the question of ascertaining the difficulty of learning the best arm in the fixed-budget setting. Finally, numerical experiments demonstrate considerable empirical improvements over existing algorithms on a variety of real and synthetic datasets.

View on arXiv
Comments on this paper