ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.12872
14
9

Benchmarking Scientific Image Forgery Detectors

26 May 2021
J. P. Cardenuto
Anderson de Rezende Rocha
ArXivPDFHTML
Abstract

The scientific image integrity area presents a challenging research bottleneck, the lack of available datasets to design and evaluate forensic techniques. Its data sensitivity creates a legal hurdle that prevents one to rely on real tampered cases to build any sort of accessible forensic benchmark. To mitigate this bottleneck, we present an extendable open-source library that reproduces the most common image forgery operations reported by the research integrity community: duplication, retouching, and cleaning. Using this library and realistic scientific images, we create a large scientific forgery image benchmark (39,423 images) with an enriched ground-truth. In addition, concerned about the high number of retracted papers due to image duplication, this work evaluates the state-of-the-art copy-move detection methods in the proposed dataset, using a new metric that asserts consistent match detection between the source and the copied region. The dataset and source-code will be freely available upon acceptance of the paper.

View on arXiv
Comments on this paper