ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.11683
20
53

Towards Compact Single Image Super-Resolution via Contrastive Self-distillation

25 May 2021
Yanbo Wang
Shaohui Lin
Yanyun Qu
Haiyan Wu
Zhizhong Zhang
Yuan Xie
Angela Yao
    SupR
ArXivPDFHTML
Abstract

Convolutional neural networks (CNNs) are highly successful for super-resolution (SR) but often require sophisticated architectures with heavy memory cost and computational overhead, significantly restricts their practical deployments on resource-limited devices. In this paper, we proposed a novel contrastive self-distillation (CSD) framework to simultaneously compress and accelerate various off-the-shelf SR models. In particular, a channel-splitting super-resolution network can first be constructed from a target teacher network as a compact student network. Then, we propose a novel contrastive loss to improve the quality of SR images and PSNR/SSIM via explicit knowledge transfer. Extensive experiments demonstrate that the proposed CSD scheme effectively compresses and accelerates several standard SR models such as EDSR, RCAN and CARN. Code is available at https://github.com/Booooooooooo/CSD.

View on arXiv
Comments on this paper