ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.11591
6
3

On robust learning in the canonical change point problem under heavy tailed errors in finite and growing dimensions

25 May 2021
Debarghya Mukherjee
Moulinath Banerjee
Yaácov Ritov
ArXivPDFHTML
Abstract

This paper presents a number of new findings about the canonical change point estimation problem. The first part studies the estimation of a change point on the real line in a simple stump model using the robust Huber estimating function which interpolates between the ℓ1\ell_1ℓ1​ (absolute deviation) and ℓ2\ell_2ℓ2​ (least squares) based criteria. While the ℓ2\ell_2ℓ2​ criterion has been studied extensively, its robust counterparts and in particular, the ℓ1\ell_1ℓ1​ minimization problem have not. We derive the limit distribution of the estimated change point under the Huber estimating function and compare it to that under the ℓ2\ell_2ℓ2​ criterion. Theoretical and empirical studies indicate that it is more profitable to use the Huber estimating function (and in particular, the ℓ1\ell_1ℓ1​ criterion) under heavy tailed errors as it leads to smaller asymptotic confidence intervals at the usual levels compared to the ℓ2\ell_2ℓ2​ criterion. We also compare the ℓ1\ell_1ℓ1​ and ℓ2\ell_2ℓ2​ approaches in a parallel setting, where one has mmm independent single change point problems and the goal is to control the maximal deviation of the estimated change points from the true values, and establish rigorously that the ℓ1\ell_1ℓ1​ estimation criterion provides a superior rate of convergence to the ℓ2\ell_2ℓ2​, and that this relative advantage is driven by the heaviness of the tail of the error distribution. Finally, we derive minimax optimal rates for the change plane estimation problem in growing dimensions and demonstrate that Huber estimation attains the optimal rate while the ℓ2\ell_2ℓ2​ scheme produces a rate sub-optimal estimator for heavy tailed errors. In the process of deriving our results, we establish a number of properties about the minimizers of compound Binomial and compound Poisson processes which are of independent interest.

View on arXiv
Comments on this paper