36
23

Distantly-Supervised Long-Tailed Relation Extraction Using Constraint Graphs

Abstract

Label noise and long-tailed distributions are two major challenges in distantly supervised relation extraction. Recent studies have shown great progress on denoising, but paid little attention to the problem of long-tailed relations. In this paper, we introduce a constraint graph to model the dependencies between relation labels. On top of that, we further propose a novel constraint graph-based relation extraction framework(CGRE) to handle the two challenges simultaneously. CGRE employs graph convolution networks to propagate information from data-rich relation nodes to data-poor relation nodes, and thus boosts the representation learning of long-tailed relations. To further improve the noise immunity, a constraint-aware attention module is designed in CGRE to integrate the constraint information. Extensive experimental results indicate that CGRE achieves significant improvements over the previous methods for both denoising and long-tailed relation extraction. The pre-processed datasets and source code are publicly available at https://github.com/tmliang/CGRE.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.