ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.11178
9
4

Context-Preserving Text Simplification

24 May 2021
C. Niklaus
Matthias Cetto
André Freitas
Siegfried Handschuh
ArXivPDFHTML
Abstract

We present a context-preserving text simplification (TS) approach that recursively splits and rephrases complex English sentences into a semantic hierarchy of simplified sentences. Using a set of linguistically principled transformation patterns, input sentences are converted into a hierarchical representation in the form of core sentences and accompanying contexts that are linked via rhetorical relations. Hence, as opposed to previously proposed sentence splitting approaches, which commonly do not take into account discourse-level aspects, our TS approach preserves the semantic relationship of the decomposed constituents in the output. A comparative analysis with the annotations contained in the RST-DT shows that we are able to capture the contextual hierarchy between the split sentences with a precision of 89% and reach an average precision of 69% for the classification of the rhetorical relations that hold between them.

View on arXiv
Comments on this paper